A Quality Initiative of the Program in Evidence-based Care (PEBC), Cancer Care Ontario (CCO)

Altered Fractionation of Radical Radiation Therapy in the Management of Unresectable Non-Small Cell Lung Cancer

Members of the Lung Cancer Disease Site Group

An assessment conducted in December 2016 put Evidence-based Series (EBS) 7-12 Version 2 in the Education and Information Section. This means that the recommendation will no longer be maintained but may still be useful for academic or other information purposes. The PEBC has a formal and standardized process to ensure the currency of each document. (PEBC Assessment & Review Protocol)

This document is available on the CCO website and is comprised of the following 3 sections:

Section 1: Clinical Practice Guideline (ENDORSED)
Section 2: Systematic Review
Section 3: Document Review Summary and Tool

Release Date: May 16, 2013

For information about the PEBC and the most current version of all reports, please visit the CCO website at http://www.cancercare.on.ca/ or contact the PEBC office at:
Phone: 905-527-4322 ext. 42822 Fax: 905-526-6775 E-mail: ccopgi@mcmaster.ca

<table>
<thead>
<tr>
<th>GUIDELINE VERSION</th>
<th>SYSTEMATIC REVIEW</th>
<th>PUBLICATIONS</th>
<th>NOTES AND KEY CHANGES</th>
</tr>
</thead>
<tbody>
<tr>
<td>October 1999</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Updated version</td>
<td>1999-2002</td>
<td>New data</td>
<td>Updated Web publication</td>
</tr>
<tr>
<td>September 2002</td>
<td></td>
<td>added to</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>original full</td>
<td></td>
</tr>
<tr>
<td>Current Version</td>
<td>2002-2012</td>
<td>New data</td>
<td>Updated Web publication</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>found in</td>
<td></td>
</tr>
<tr>
<td>May 2012</td>
<td></td>
<td>section 3:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Document Review Summary and Tool</td>
<td></td>
</tr>
</tbody>
</table>

Guideline Report History

Table of Contents

Section 1: Guideline Recommendations: ...1

Section 2: Systematic Review ...4

Section 3: Document Review Summary and Tool ..24
Altered Fractionation of Radical Radiation Therapy in the Management of Unresectable Non-Small Cell Lung Cancer: Guideline Recommendations

Members of the Lung Cancer Disease Site Group

A Quality Initiative of the Program in Evidence-Based Care (PEBC), Cancer Care Ontario (CCO)

These guideline recommendations have been ENDORSED, which means that the recommendations are still current and relevant for decision making. Please see Section 3: Document Review Summary and Tool for a summary of updated evidence published between 2002 and 2012, and for details on how this Clinical Practice Guideline was ENDORSED.

Report Date: May 16 2013

SUMMARY

Guideline Question
Do any altered fractionation radiation schemes prolong survival in the treatment of locally advanced, unresectable stage III non-small cell lung cancer (NSCLC) compared with the North American standard of 60 Gy in 30 fractions?

Target Population
These recommendations apply to patients with locally advanced, unresectable stage III non-small cell lung cancer (NSCLC).

Note: The current standard treatment for unresected stage III NSCLC is combined modality therapy (Practice Guideline Report #7-3: Unresected Stage III Non-Small Cell Lung Cancer - see http://www.cancercare.on.ca/pdf/pebc7-3s.pdf).

Recommendations
Key Recommendations
• There is evidence from one randomized controlled trial demonstrating that Continuous Hyperfractionated Accelerated Radiation Therapy (CHART) improves survival over standard radiotherapy of 60 Gy in 30 fractions, in patients with locally advanced,
unresectable stage III non-small cell lung cancer (NSCLC). Selected patients (with ECOG performance status ≥ 1 who do not fit the criteria for induction chemotherapy and radiotherapy or patients who prefer radiotherapy only) may be considered for CHART.

- Evidence from a comparative cohort study suggests that Hyperfractionated Accelerated Radiation Therapy (HART) also improves survival over standard radiotherapy.
- Of those trials designed to improve therapeutic ratios in patients with locally advanced, unresectable stage III NSCLC there is insufficient data of high quality to recommend hyperfractionation over standard radiotherapy of 60 Gy in 30 fractions. Further randomized controlled trials are necessary to confirm the benefits, if any, of hyperfractionation radiotherapy.
- Trials examining therapies providing greater convenience to patients with locally advanced, unresectable stage III NSCLC did not show evidence of a survival benefit for either hypofractionation or split-course radiotherapy. If symptom palliation is the main concern, patients may consider participating in clinical trials examining the role of hypofractionation or split-course radiotherapy.
- The effect of treatment on quality of life or health care costs was not reviewed in most of these trials. Therefore, if quality of life and health care costs are issues of concern, there is insufficient evidence at this time to draw any conclusions on the value of altered fractionation.

Qualifying Statements
- The main adverse effect associated with these altered fractionation treatments is acute esophagitis.

Methods
Entries to MEDLINE (through September 2002), CANCERLIT (through September 2002) and Cochrane Library (through Issue 4, 2002) databases have been searched for evidence relevant to this practice guideline. The most recent literature search was performed in October 2002.

Evidence was selected and reviewed by three members of the Cancer Care Ontario Practice Guidelines Initiative’s (CCOPGI) Lung Cancer Disease Site Group (Lung DSG) and methodologists. This practice guideline has been reviewed and approved by the Lung DSG, which comprises medical and radiation oncologists, pathologists, surgeons, a psychologist, a medical sociologist and two community representatives.

External Review by Ontario practitioners was obtained through a mailed survey. Final approval of the original guideline report was obtained from the Practice Guidelines Coordinating Committee (PGCC). The CCOPGI has a formal standardized process to ensure the currency of each guideline report. This consists of periodic review and evaluation of the scientific literature, and where appropriate, integration of this literature with the original guideline information.

Key Evidence
- One published meta-analysis, eight randomized controlled trials, one comparative cohort study and two randomized phase I/II trials evaluating altered fractionation (including continuous hyperfractionated, accelerated, CHART, HART, Continuous Hyperfractionated Accelerated Radiation Therapy Weekendless (CHARTWEL), or hypofractionated and split-course radiotherapy) were reviewed.
- The published meta-analysis demonstrated a significant survival benefit for hyperfractionated over standard radiotherapy (odds ratio, 0.69; 95% confidence interval, 0.51 to 0.95; p=0.02). The CCOPGI’s Resource Group conducted an (unpublished) meta-analysis of the same trials as the published meta-analysis which did not demonstrate a
significant survival benefit for hyperfractionated over standard radiotherapy (odds ratio, 0.67; 95% confidence interval, 0.42 to 1.07; p=0.091).

- Three of four randomized controlled trials demonstrated a survival benefit for hyperfractionation compared with standard radiotherapy, although not all results were statistically significant [data from one of the three trials were not statistically significant; data from the second trial demonstrated a three year survival rate of 22% for hyperfractionated versus 0% for standard radiotherapy, but no significance level was reported; and the third trial demonstrated a statistically significant two-year survival benefit (p=0.05)].

- With respect to hyperfractionated accelerated radiotherapy: one randomized controlled trial which compared CHART with standard radiotherapy demonstrated an advantage with CHART for two-year survival rates (30% versus 21%) and five-year survival rates (20% versus 13%) (hazard ratio, 0.78; 95% confidence interval, 0.65 to 0.94; p=0.008). One comparative cohort study demonstrated a three-year survival benefit for HART of 28% versus 6% for standard radiotherapy (p<0.001). No survival data were cited in the full report of one phase I/II study of CHARTWEL; the authors state that there was no survival difference between the two groups at 18 months after radiotherapy.

- One randomized controlled trial showed that hypofractionation improved three-year survival (19% versus 9% for standard radiotherapy) but no significance was reported. Acute treatment toxicity was reduced in the hypofractionation patients (30% experienced no esophagitis compared with 70% of standard radiotherapy patients).

- Hyperfractionation, CHART and hypofractionated radiotherapy demonstrated no significant differences in late toxicity compared with standard radiotherapy. Esophagitis was more severe (p=0.004) and of longer duration (p<0.0001) in patients receiving accelerated radiotherapy compared to the standard radiotherapy group. Esophagitis was experienced by 87% of HART patients versus 44% of standard radiotherapy patients (p<0.05). Accelerated radiotherapy was shown to increase acute toxicity over standard radiotherapy. It is unclear whether toxicity was monitored for split-course radiotherapy.

Funding
The PEBC is supported by Cancer Care Ontario (CCO) and the Ontario Ministry of Health and Long-Term Care. All work produced by the PEBC is editorially independent from its funding agencies.

Copyright
This evidence-based series is copyrighted by Cancer Care Ontario; the series and the illustrations herein may not be reproduced without the express written permission of Cancer Care Ontario. Cancer Care Ontario reserves the right at any time, and at its sole discretion, to change or revoke this authorization.

Disclaimer
Care has been taken in the preparation of the information contained in this document. Nonetheless, any person seeking to apply or consult the evidence-based series is expected to use independent medical judgment in the context of individual clinical circumstances or seek out the supervision of a qualified clinician. Cancer Care Ontario makes no representation or guarantees of any kind whatsoever regarding their content or use or application and disclaims any for their application or use in any way.

Contact Information
For information about the PEBC and the most current version of all reports, please visit the CCO website at http://www.cancercare.on.ca/ or contact the PEBC office at:

Phone: 905-527-4322 ext. 42822 Fax: 905-526-6775 E-mail: ccopgi@mcmaster.ca
Evidence-based Series #7-12 version 2: Section 2

Altered Fractionation of Radical Radiation Therapy in the Management of Unresectable Non-Small Cell Lung Cancer: A Systematic Review

Members of the Lung Cancer Disease Site Group

A Quality Initiative of the Program in Evidence-based Care (PEBC), Cancer Care Ontario (CCO)

These guideline recommendations have been ENDORSED, which means that the recommendations are still current and relevant for decision making. Please see Section 3: Document Review Summary and Tool for a summary of updated evidence published between 2002 and 2012, and for details on how this Clinical Practice Guideline was ENDORSED.

Section Date: April 2002

Information from the original guideline report is labeled ORIGINAL and new information that has emerged from review and updating activities is labeled UPDATE in this report.

I. QUESTION

Do any altered fractionation radiation schemes prolong survival in the treatment of locally advanced, unresectable stage III non-small cell lung cancer (NSCLC) compared with the North American standard of 60 Gy in 30 fractions?

II. CHOICE OF TOPIC AND RATIONALE

Altered fractionation radiation is a type of radiation therapy designed either to increase control of the primary tumour and decrease the toxicity to normal tissues, thereby improving the therapeutic ratio, or to permit greater convenience for patients without compromising primary tumour control and normal tissue effects. There are at least five altered fractionation schemes of radiation therapy: a) hyperfractionated radiation therapy; b) accelerated radiation therapy; c) hyperfractionated accelerated radiation therapy; d) hypofractionated radiation therapy, and e) split-course radiation therapy.

III. DEFINITIONS
Hyperfractionated Radiation Therapy (Non-Accelerated)

Hyperfractionation is defined as the use of two or more fractions daily of smaller than conventional fraction size. This results in an increased total nominal tumour dose compared with standard radiation. The rationale is to exploit the enhanced repair capacity of dose-limiting, late-reacting, normal tissues compared with rapidly proliferating tumours.

Accelerated Radiation Therapy

Accelerated radiation therapy is defined as the use of two or more fractions of standard fraction size daily to the same conventional total dose as standard radiotherapy, but increasing the number of fractions per week and shortening the overall treatment time. The intent of accelerated radiation therapy is to reduce re-population in rapidly proliferating tumours. Acute normal tissue toxicity is usually increased.

Hyyperfractionated Accelerated Radiation Therapy

Hyperfractionated accelerated radiation therapy combines the features of an accelerated and hyperfractionated regimen as outlined above (i.e., the use of two to three fractions of smaller fraction size daily, delivered over a shorter period of time than conventional therapy). The rationale is to reduce long-term normal tissue toxicity by smaller fraction size and to reduce the risk of re-population in rapidly proliferating tumours. Variants of hyperfractionated accelerated radiation therapy include Continuous Hyperfractionated Accelerated Radiation Therapy (CHART), Continuous Hyperfractionated Accelerated Radiation Therapy Weekendless (CHARTWEL), and Hyperfractionated Accelerated Radiation Therapy (HART).

Hypofractionated Radiation Therapy

Hypofractionation is an altered fractionation scheme in which radiation is given at least once weekly instead of daily. The fraction size is larger than the conventional 1.8 to 2.0 Gy fraction and the total overall treatment time is usually shorter than that of the conventional treatment. In the past, hypofractionation has been used primarily to accommodate radiation modifiers, e.g., hyperbaric oxygen (1) and radiosensitizers (2,3), both of which require fewer weekly treatments to achieve best results or are limited to a reduced frequency of treatments by potential toxicity. Hypofractionation schedules have been used to accommodate relative equipment shortages and the convenience of patients who must travel long distances (4).

Split-Course Radiation Therapy

Split-course radiation therapy is an altered fractionation regimen originally designed to diminish radiation morbidity by splitting the total dose into at least two separate courses with an interruption of 10 to 14 days (5). Most radiation oncologists consider split-course radiotherapy to be disadvantageous compared with continuous treatment because the decreased radiation morbidity of normal tissues will also result in lower anti-tumour efficiency and reduced local control rates. There is also concern about repopulation during the rest period (6). There are at least three regimens of split-course radiotherapy:

1. Standard total treatment dose at 1.8 to 2.0 Gy fraction size, but with different total treatment time and an interruption interval of one to two weeks (7).
2. Standard total treatment dose but different fraction size to maintain the same overall treatment time including the interruption interval of one to two weeks (8).
3. Different total treatment dose, fraction size, overall treatment time and interruption interval (9).
Members of the Cancer Care Ontario Provincial Lung Cancer Disease Site Group (Lung DSG) decided to examine the altered fractionation schemes and determine whether there was evidence that any of these regimens improve the survival of patients with locally advanced, unresectable stage III NSCLC.

IV. METHODS

Guideline Development

This guideline report was developed by the Cancer Care Ontario Practice Guidelines Initiative (CCOPGI), using the methodology of the Practice Guidelines Development Cycle (1u). Evidence was selected and reviewed by three members of the CCOPGI’s Lung DSG and methodologists. The guideline is a convenient and up-to-date source of the best available evidence on altered fractionation of radical radiation therapy in the management of unresectable NSCLC, developed through systematic reviews, evidence synthesis and input from practitioners in Ontario. It is intended to promote evidence-based practice. The Practice Guidelines Initiative is editorially independent of Cancer Care Ontario and the Ontario Ministry of Health and Long-Term Care.

External review by Ontario practitioners was obtained through a mailed survey consisting of items that address the quality of the draft practice guideline report and recommendations, and whether the recommendations should serve as a practice guideline. Final approval of the original guideline report was obtained from the Practice Guidelines Coordinating Committee.

The CCOPGI has a formal standardized process to ensure the currency of each guideline report. This consists of periodic review and evaluation of the scientific literature, and where appropriate, integration of this literature with the original guideline information.

Literature Search Strategy

The MEDLINE (Ovid) database was searched from January 1987 to July 1999 and the CANCERLIT (Ovid) database from January 1987 to April 1999 using these terms: carcinoma, non small cell lung; radiotherapy; hyperfractionation; accelerated fractionation; hypofractionation; altered fractionated; randomized controlled trial; meta-analysis; and guidelines. The Physician Data Query file (PDQ) and the Cochrane Library (1999, Issue 2) were also searched to identify clinical trials.

Update

The original literature search has been updated using the MEDLINE and CANCERLIT (through September 2002) and Cochrane Library (through Issue 4, 2002) databases and the 2002 proceedings of the annual meetings of the American Society of Clinical Oncology and the American Society for Therapeutic Radiology and Oncology.

Inclusion Criteria

Articles were selected for inclusion in this systematic review of the evidence if they met the following criteria:

1. Randomized controlled trials comparing altered fractionation (including continuous hyperfractionated, accelerated, CHART, HART, CHARTWEL, or hypofractionated and split-course radiotherapy) with conventional fractionation in the treatment of stage III NSCLC.
2. Comparative cohort studies and phase I/II studies were eligible where data from randomized controlled trials were not available.
3. Survival was the primary outcome of interest. Toxicity was also considered.
Synthesizing the Evidence

A published meta-analysis (fixed effects Peto model) of three randomized controlled trials comparing standard fractionation radiotherapy to hyperfractionated radiotherapy was identified (10). The CCOPGI’s Resource Group conducted an (unpublished) meta-analysis of two-year survival data from the same three randomized controlled trials (fixed effects Peto model) using the software application Meta-analyst provided by Dr. Joseph Lau, Tufts New England Medical Centre, Boston, MA. Results were expressed as an odds ratio for deaths, with a 95% confidence interval. Pooling of data could not be performed for any other altered fractionation strategy due to lack of published randomized controlled trials.

V. RESULTS

Literature Search Results

Eight randomized controlled trials, one comparative cohort study and two randomized phase I/II trials were reviewed. Results are summarized in Table 1a and details of the radiotherapy regimens are summarized in Table 2a; the phase I/II trial on hyperfractionation was excluded from the tables, since randomized controlled trial data were available, but is discussed in the text.

Update

Reviewing and updating activities identified three reports, each of which provided updated or final data for a trial already included in the practice guideline report. Results provided in the new reports are summarized in Table 1b and details of the radiotherapy regimens in the new reports are provided in Table 2b.

Table 1a. Trials in the original practice guideline report that examined altered fractionated radiotherapy: Results.

<table>
<thead>
<tr>
<th>First Author, Date (Reference)</th>
<th>Tumour Stage</th>
<th>No. Patients</th>
<th>Survival (%)</th>
<th>Median Survival (mo)</th>
<th>Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>1-yr</td>
<td>2-yr</td>
<td>3-yr</td>
</tr>
<tr>
<td>Hyperfractionation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sause 1995 (11)</td>
<td>Standard</td>
<td>95% III + II</td>
<td>149</td>
<td>46</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>Hfx</td>
<td></td>
<td>152</td>
<td>51</td>
<td>24</td>
</tr>
<tr>
<td>Fu 1994 (12)</td>
<td>Standard</td>
<td>90% III + I, II</td>
<td>51</td>
<td>32</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Hfx</td>
<td></td>
<td>54</td>
<td>53</td>
<td>13</td>
</tr>
<tr>
<td>Kagami 1992 (13)</td>
<td>Standard</td>
<td>100% III</td>
<td>18</td>
<td>NR</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>Hfx</td>
<td></td>
<td>18</td>
<td>NR</td>
<td>50</td>
</tr>
<tr>
<td>Wang 1996 (14)</td>
<td>Standard</td>
<td>68% III + II</td>
<td>33</td>
<td>64</td>
<td>15</td>
</tr>
<tr>
<td>*Hfx</td>
<td></td>
<td></td>
<td>30</td>
<td>80</td>
<td>23</td>
</tr>
<tr>
<td>Hyperfractionated Accelerated</td>
<td>CHART</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Saunders 1996, 1997 (15,16)</td>
<td>Standard</td>
<td>61% III + I, II</td>
<td>338</td>
<td>55</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>HART</td>
<td></td>
<td>225</td>
<td>63</td>
<td>29</td>
</tr>
<tr>
<td>CHARTWEL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Saunders 1998 (17) Phase I/II</td>
<td>54 Gy</td>
<td>82% III+ I</td>
<td>17</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td></td>
<td>60 Gy</td>
<td>70% III + I, II</td>
<td>30</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>HART</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fu 1997 (18)</td>
<td>Standard</td>
<td>85% III + I, II</td>
<td>50**</td>
<td>60</td>
<td>18</td>
</tr>
<tr>
<td>*HART</td>
<td></td>
<td></td>
<td>60**</td>
<td>72</td>
<td>47</td>
</tr>
</tbody>
</table>

Section 2: Systematic Review
Table 1b. Trials found during review and updating activities which examined altered fractionated radiotherapy: Results.

<table>
<thead>
<tr>
<th>First Author, Date (Reference)</th>
<th>Tumour Stage</th>
<th>No. Patients</th>
<th>Survival (%)</th>
<th>Median Survival (mo)</th>
<th>Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>1-yr</td>
<td>2-yr</td>
<td>3-yr</td>
</tr>
<tr>
<td>Hyperfractionation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sause 2000 (4u) *</td>
<td>Standard</td>
<td>99% III +II</td>
<td>152</td>
<td>47</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>Hfx</td>
<td>96% III +II</td>
<td>154</td>
<td>52</td>
<td>24</td>
</tr>
<tr>
<td>Hyperfractionated Accelerated</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Saunders 1999 (2u) †</td>
<td>Standard</td>
<td>61% III+ I, II</td>
<td>338</td>
<td>NR</td>
<td>21</td>
</tr>
<tr>
<td>CHART</td>
<td>CHART</td>
<td>61% III+ I, II</td>
<td>225</td>
<td>NR</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Accelerated</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ball 1999 (3u) ‡§</td>
<td>Standard</td>
<td>78% III+ I, II</td>
<td>53</td>
<td>60</td>
<td>26</td>
</tr>
<tr>
<td>Accelerated</td>
<td>78% III+ I, II</td>
<td>46</td>
<td>61</td>
<td>28</td>
<td>5-yr: 13</td>
</tr>
</tbody>
</table>

NOTE: CI = confidence interval; Hfx = hyperfractionation; HR = hazard ratio; mo = months; No. = number; NR = not reported; yr = year.

* This is the final report of the trial included in the original practice guideline as Sause 1995 (11) and Sause 1998 (21) (abstract).
† This report provides mature data from the trial included in the original practice guideline as Saunders 1996, 1997 (15,16).
‡ This is the final report of the trial included in the original practice guideline as Ball 1995 (19).
§ Survival data cited are for patients with stage III disease only. There were 42 stage III patients in the standard radiotherapy arm and 36 stage III patients in the accelerated arm.

Table 2a. Trials in the original practice guideline report examining altered fractionated radiotherapy: Radiotherapy schedules.

<table>
<thead>
<tr>
<th>First Author, Year (Reference)</th>
<th>Total Dose and Radiotherapy Schedules</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hyperfractionation</td>
<td></td>
</tr>
<tr>
<td>Sause 1995 (11)</td>
<td>Standard Hyperfractionated</td>
</tr>
<tr>
<td></td>
<td>60 Gy; 2 Gy/fraction, 5 days/week over 6 weeks</td>
</tr>
<tr>
<td></td>
<td>69.6 Gy; 1.2 Gy/fraction twice per day, consecutive days until total dose achieved</td>
</tr>
<tr>
<td>Fu 1994 (12)</td>
<td>Standard</td>
</tr>
<tr>
<td></td>
<td>63.9 Gy; 1.8 to 2.0 Gy/fraction daily</td>
</tr>
<tr>
<td>First Author, Year (Reference)</td>
<td>Total Dose and Radiotherapy Schedules</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>--------------------------------------</td>
</tr>
<tr>
<td>Hyperfractionation</td>
<td></td>
</tr>
<tr>
<td>Sause 2000 (4u)</td>
<td>Standard 60 Gy; 2 Gy/fraction, 30 fractions over 6 weeks</td>
</tr>
<tr>
<td></td>
<td>Hyperfractionated 69.6 Gy; 1.2 Gy/fraction twice per day, 52 fractions</td>
</tr>
<tr>
<td></td>
<td>69.6 Gy; 1.2 Gy/fraction twice per day, consecutive days 5 days/week over 7 weeks</td>
</tr>
<tr>
<td>Wang 1996 (14)</td>
<td>* Standard 60 Gy; 2 Gy/fraction, 5 days/week over 7 weeks</td>
</tr>
<tr>
<td></td>
<td>* Hyperfractionated 72 Gy; 1.2 Gy/fraction twice per day, 5 days/week over 3 weeks; second course given after 2 weeks rest</td>
</tr>
<tr>
<td>Hyperfractionated Accelerated</td>
<td></td>
</tr>
<tr>
<td>CHART</td>
<td>Standard 60 Gy; 2 Gy/fraction, 30 fractions over 6 weeks</td>
</tr>
<tr>
<td></td>
<td>CHART 54 Gy; 1.5 Gy three times per day over 12 days</td>
</tr>
<tr>
<td>CHARTWEL</td>
<td>Saunders 1998 (17) Phase I/II</td>
</tr>
<tr>
<td></td>
<td>54 Gy 54 Gy; 1.5 Gy/fraction, 3 fractions/day, Monday to Friday over 16 days</td>
</tr>
<tr>
<td></td>
<td>60 Gy 60 Gy; 1.5 Gy/fraction, 3 fractions/day, Monday to Friday over 18 days</td>
</tr>
<tr>
<td>HART</td>
<td>Fu 1997 (18) Comparative Cohort Study</td>
</tr>
<tr>
<td></td>
<td>Standard 63.9 Gy; 34 fractions over 48 days</td>
</tr>
<tr>
<td></td>
<td>HART 74.3 Gy; 1.1 Gy/fraction, 3 fractions/day, 5 days/week, 33 days</td>
</tr>
<tr>
<td>Accelerated</td>
<td></td>
</tr>
<tr>
<td>Ball 1995 (19) (preliminary results)</td>
<td>† Standard 60 Gy in 30 fractions, 5 fractions/week over 6 weeks</td>
</tr>
<tr>
<td></td>
<td>† Accelerated 60 Gy in 30 fractions, 10 fractions/week over 3 weeks</td>
</tr>
<tr>
<td>Hypofractionation</td>
<td></td>
</tr>
<tr>
<td>Slawson 1988 (20)</td>
<td>Standard 60 Gy; 2 Gy/fraction, 5 fractions/week over 6 weeks</td>
</tr>
<tr>
<td></td>
<td>Hypofractionated 60 Gy; 5 Gy/fraction, 1 fraction/week over 12 weeks</td>
</tr>
<tr>
<td>Split-Course</td>
<td></td>
</tr>
<tr>
<td>Routh 1995 (7)</td>
<td>Standard 55 to 59.4 Gy in 33 fractions</td>
</tr>
<tr>
<td></td>
<td>Split 60 to 53 Gy in 35 fractions; treatment interrupted for 10 to 14 days after first 18 fractions</td>
</tr>
</tbody>
</table>

* plus chemotherapy (mitomycin, etoposide, cisplatin)
† with/without chemotherapy

Table 2b. Trials found during review and updating activities which examine altered fractionated radiotherapy: Radiotherapy schedules

<table>
<thead>
<tr>
<th>First Author, Year (Reference)</th>
<th>Total Dose and Radiotherapy Schedules</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hyperfractionation</td>
<td></td>
</tr>
<tr>
<td>Sause 2000 (4u)</td>
<td>Standard 60 Gy; 2 Gy/fraction, 30 fractions over 6 weeks</td>
</tr>
<tr>
<td></td>
<td>Hyperfractionated 69.6 Gy; 1.2 Gy/fraction twice per day, consecutive days 5 days/week until total dose achieved</td>
</tr>
<tr>
<td>Hyperfractionated Accelerated</td>
<td></td>
</tr>
<tr>
<td>CHART</td>
<td>Standard 60 Gy; 2 Gy/fraction, 30 fractions over 6 weeks</td>
</tr>
<tr>
<td></td>
<td>CHART 54 Gy; 1.5 Gy three times per day over 12 days</td>
</tr>
<tr>
<td></td>
<td>HART 74.3 Gy; 1.1 Gy/fraction, 3 fractions/day, 5 days/week, 33 days</td>
</tr>
<tr>
<td>Accelerated</td>
<td></td>
</tr>
<tr>
<td>Ball 1995 (3u) †</td>
<td>† Standard 60 Gy in 30 fractions, 5 fractions/week over 6 weeks</td>
</tr>
<tr>
<td></td>
<td>† Accelerated 60 Gy in 30 fractions, 10 fractions/week over 3 weeks</td>
</tr>
</tbody>
</table>

* This report provides mature data from the trial included in the original practice guideline as Saunders 1996, 1997 (15,16).
† This is the final report of the trial included in the original practice guideline as Ball 1995 (19).
‡ with/without chemotherapy
Outcomes

Hyperfractionated Radiotherapy

One meta-analysis, four randomized controlled trials and one randomized phase I/II trial have been published comparing hyperfractionated radiotherapy to standard radiotherapy in patients with locally advanced, unresectable stage III NSCLC.

Sause et al (11) conducted a three-arm randomized controlled trial in which patients received standard fractionation radiotherapy, combined modality therapy (standard fractionation preceded by two cycles of cisplatin and vinblastine) or hyperfractionated radiotherapy. Ninety-five percent of patients had stage IIIA or IIIB NSCLC. One-year survival rates were 46% for standard radiotherapy, 60% for combined modality therapy, and 51% for hyperfractionated radiotherapy. Median survival rates were 11.4 months, 13.8 months, and 12.3 months, respectively. A comparison of the overall survival curves demonstrated that combined modality therapy was superior to either standard or hyperfractionated radiotherapy (p=0.03 logrank), with no statistically significant benefit observed for hyperfractionated over standard radiotherapy (p=0.08 logrank, p=0.03 Wilcoxon). There were six cases of acute toxicity (grade 4) related to radiotherapy; four occurred in the hyperfractionated group, one in the standard radiotherapy group and one in the combined modality group.

Sause et al published five-year results, in abstract form (21). With minimum follow-up of five years, five-year survival rates were 5% for standard radiotherapy, 8% for combined modality therapy, and 6% for hyperfractionated radiotherapy; median survival rates were 11.4 months, 13.7 months, and 12.2 months respectively. The survival differences were statistically significant, favouring the combined modality arm (p=0.04). Treatment-related deaths were highest in the combined modality arm; four patients died in the combined modality arm, one patient in the hyperfractionated arm, and no patients in the standard therapy arm.

Fu et al (12) randomized patients to receive hyperfractionated radiotherapy or standard radiotherapy. Ninety percent of patients had stage III NSCLC. Hyperfractionation improved one- and two-year survival rates, as well as local control rates. One-year survival rates were 64% for hyperfractionated radiotherapy and 18% for standard radiotherapy, while two-year survival rates were 32% and 6%, respectively (p<0.05). One-year local control rates were 47.3% and 29.1%, respectively (p<0.05).

Kagami et al (13) randomized 18 patients to receive hyperfractionated radiotherapy and 18 patients to receive standard radiotherapy. All patients had stage IIIA or IIIB NSCLC. The overall two-year survival rates were 50% for hyperfractionated radiotherapy and 31.1% for standard radiotherapy; three-year survival rates were 21.8% and 0%, respectively. This trial suggests that hyperfractionated radiotherapy may improve survival but significance was not reported. Fever due to radiation pneumonitis occurred in seven hyperfractionated patients and four standard radiotherapy patients. No severe late toxicity was observed in either group.

Wang et al (14) randomized patients to four different groups: hyperfractionated radiotherapy plus chemotherapy, standard radiotherapy plus chemotherapy, split-course radiotherapy plus chemotherapy, and standard radiotherapy-alone. Sixty-eight percent of patients had stage III NSCLC and they were evenly distributed across all four groups. The one-year survival rate was 80% for hyperfractionated radiotherapy plus chemotherapy and 63.6% for standard radiotherapy plus chemotherapy. Two-year survival rates were 23.3% and 15.15%, respectively, and three-year survival rates were 10% and 3.3%, respectively. The observed differences in survival rates were not statistically significant, likely due to the small number of patients.

Stuschke and Thames (10) conducted a meta-analysis on survival data from the trials by Sause et al (11), Fu et al (12), and Kagami et al (13). They reported improved survival for hyperfractionated radiotherapy over standard radiotherapy (odds ratio, 0.69; 95% confidence interval, 0.53-0.89).
interval, 0.51 to 0.95; p=0.02).

Data from published reports of the trials by Sause et al (11), Fu et al (12), and Kagami et al (13) were pooled and examined by the CCOPGI's Resource Group, using Meta-analyst® (Figure 1). Based on two-year survival rates and a fixed effects model (Peto), this meta-analysis did not demonstrate a significant survival benefit for hyperfractionated radiotherapy over standard radiotherapy (odds ratio, 0.67; 95% confidence interval, 0.42 to 1.07; p=0.091). This meta-analysis has not been published.

Cox et al (22,23) randomized 848 patients with stage II to III NSCLC to either standard radiotherapy (60 Gy total) or various hyperfractionated doses (64.8 Gy, 69.6 Gy, 74.4 Gy, and 79.2 Gy total doses) in a phase I/II randomized dose-escalation study. Patients were initially randomized to the three lowest doses (60 Gy, 64.8 Gy, 69.6 Gy). After assessment of acute and late risks, the fourth dose arm (74.4 Gy) was opened and the 60 Gy arm closed, after which the 79.2 Gy arm was opened and the 64.8 Gy arm closed. Because Cox et al (16, 17) is a phase I/II randomized trial that entered patients into the various arms at different times, it is not comparable to, and was not analyzed with, the data from Sause (11), Fu (12), Kagami (13) and Wang (14).

Update

Sause et al published the final results of their three-arm randomized controlled trial in which patients received standard fractionation radiotherapy, combined modality therapy (standard fractionation preceded by two cycles of cisplatin and vinblastine) or hyperfractionated radiotherapy. (4u). Final results indicated median survival rates of 11.4 months, 13.2 months, and 12 months, respectively, with five-year survival rates of 5%, 8% and 6% respectively. Comparison of the overall survival curves demonstrated that combined modality therapy was superior to either standard or hyperfractionated radiotherapy (p=0.04 logrank), with no statistically significant benefit observed for hyperfractionated over standard radiotherapy. There were six cases of acute toxicity (grade 4 or higher) related to radiotherapy; four occurred on the hyperfractionated arm and one each in the standard radiotherapy and combined modality arms. Late toxicity (90 days or longer after treatment, grade 4 or higher) occurred in three patients on the standard radiotherapy arm and five patients on each of the combined modality and hyperfractionated arms. Treatment-related deaths were highest in the combined modality arm; three patients died on the combined modality arm, one patient in the hyperfractionated arm, and no patients in the standard therapy arm.

Figure 1. Meta-analysis Examining Standard versus Hyperfractionated Thoracic Radiotherapy

<table>
<thead>
<tr>
<th>Study</th>
<th>Hyperfractionated radiotherapy</th>
<th>Standard thoracic radiotherapy</th>
<th>Odds Ratio for Death</th>
<th>95% Confidence Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Deaths</td>
<td>Total</td>
<td>Deaths</td>
<td>Total</td>
</tr>
<tr>
<td>Sause 1995 (11)</td>
<td>116</td>
<td>152</td>
<td>121</td>
<td>149</td>
</tr>
<tr>
<td>Fu 1994 (12)</td>
<td>47</td>
<td>54</td>
<td>47</td>
<td>51</td>
</tr>
<tr>
<td>Kagami 1992 (13)</td>
<td>9</td>
<td>18</td>
<td>13</td>
<td>18</td>
</tr>
<tr>
<td>TOTAL</td>
<td>172</td>
<td>224</td>
<td>181</td>
<td>218</td>
</tr>
</tbody>
</table>
Accelerated Radiation Therapy

Preliminary results from one randomized controlled trial of accelerated radiotherapy have been published by Ball et al (19). One hundred patients were randomized to four groups: standard radiotherapy, accelerated radiotherapy, standard radiotherapy plus carboplatin in weeks one and five, or accelerated radiotherapy plus carboplatin in week one. Seventy-two percent of patients had stage III NSCLC. The estimated median survival for the whole group was 17.1 months (95% confidence interval, 13.2 to 22.0 months); no comparative survival data are available yet.

Update

Ball et al published the final report of four-arm randomized controlled trial of accelerated radiotherapy versus standard radiotherapy with or without chemotherapy (3u). Two hundred and four patients were randomized to four groups: standard radiotherapy only, accelerated radiotherapy only, standard radiotherapy plus chemotherapy (carboplatin for five days during weeks 1 and 5), or accelerated radiotherapy plus chemotherapy (carboplatin for five days during week 1). Seventy-eight percent of patients in the two radiotherapy-only arms had stage III NSCLC. Median survival for patients with stage III disease in the standard radiotherapy arm was 13.8 months, for stage III patients in the accelerated radiotherapy arm, 14.4 months. One- and two-year survival rates for the stage III patients who received standard radiotherapy were 60% and 26%, for accelerated radiotherapy were 61% and 28%. No statistical comparisons between these two groups were reported.

Continuous Hyperfractionated Accelerated Radiation Therapy (CHART)

One randomized controlled trial examining the effect of CHART has been published by Saunders et al (15,16). Patients were randomized to receive either standard radiotherapy or CHART. Each group consisted predominantly (61%) of patients with stage IIIA or IIIB NSCLC. All analyses were by intention-to-treat. Both survival and local control were improved for CHART. One-year survival was 63% for CHART versus 55% for standard radiotherapy, while two-year survival rates were 29% and 20%, respectively. The Kaplan-Meier hazard ratio was 0.76 (95% confidence interval, 0.63 to 0.92; p=0.004 logrank), indicating a 24% reduction in the relative risk of death with CHART at two years. The hazard ratio for local control was 0.77 (95% confidence interval, 0.61 to 0.97; p=0.027), indicating a 23% reduction in relative risk of progression with CHART. The two-year progression-free rate was 23% for CHART and 15% for standard radiotherapy. Acute esophagitis was more severe in patients receiving CHART but at three months was similar to that of patients receiving standard radiotherapy. There was no difference in late morbidity.

These data were updated by direct communication with the author. Median survival for CHART was 15.6 months compared with 12.9 months for standard radiotherapy. This
corresponds to a decrease in the relative risk of death of 22%. Four year survival for CHART was 13% compared with 6% for standard radiotherapy. This corresponds to a hazard ratio of 0.78 (95% confidence interval, 0.65 to 0.94; p=0.008).

Additional data were collected to assess the long- and short-term side effects of CHART versus conventional radiotherapy, using the Rotterdam Symptom Checklist and the Hospital Anxiety and Depression Scale (24). Results confirm the previous finding of few differences in side effects between CHART and conventional radiotherapy.

Update

Saunders et al published mature data from the randomized controlled trial examining the effect of CHART (2u). Patients were randomized to receive either standard radiotherapy or CHART. Mature data confirmed that both survival and local control were improved for CHART. Two-year survival was 30% for CHART versus 21% for standard radiotherapy, while three-year survival rates were 20% and 13%, respectively. The Kaplan-Meier hazard ratio for death was 0.78 (95% confidence interval, 0.65 to 0.94; p=0.008 logrank), indicating a 22% reduction in the relative risk of death with CHART at three years. Median survival was 16.5 months for CHART versus 13 months for standard therapy. The hazard ratio for local control was 0.79 (95% confidence interval, 0.63 to 0.98; p=0.033), indicating a 21% reduction in relative risk of progression with CHART. Acute esophagitis was confirmed to be more severe in patients receiving CHART but at three months was similar to that of patients receiving standard radiotherapy. There was no difference in late morbidity.

Continuous Hyperfractionated Accelerated Radiation Therapy Weekendless (CHARTWEL)

Saunders et al (17) have published a report of a phase I/II dose escalation study of CHARTWEL. Sixty-four patients were entered into the study and assigned to one of four CHARTWEL regimens: 54 Gy over 16 days (n=17), 57 Gy over 17 days (n=7), 58.5 Gy over 17 days (n=10) or 60 Gy over 18 days (n=30). Data cited in the paper are comparisons of 54 Gy versus 60 Gy. Acute and late reactions in the 57 and 58.5 Gy arms were no higher than with 54 Gy. The authors state that there was no difference in overall survival between 54 Gy and 60 Gy in the first 18 months after radiotherapy; no survival data are cited in the report.

Dysphagia and analgesia use were measured on scales developed by the authors. Acute dysphasia was more severe, required more analgesia and lasted longer in the 60 Gy group, but by 12 weeks 54 and 60 Gy groups showed similar levels of esophagitis. No differences between the groups were seen in early radiation pneumonitis; after 6 months, the 60 Gy group showed a higher incidence of mild pulmonary complications.

Hyperfractionated Accelerated Radiation Therapy (HART)

One comparative cohort study has been published by Fu et al with regard to HART (18). There were 60 patients in the HART group; 50 patients were selected from the control group of another trial of hyperfractionated radiation for NSCLC in order to compare the outcome of HART with conventional radiotherapy. Eighty-five percent of patients receiving HART and 86% of those receiving standard radiotherapy had stage IIIA or IIIB NSCLC. Patients with stage III disease also received adjuvant chemotherapy, before and/or after radiotherapy (cisplatin 25-30mg/m²/day and etoposide 50-60mg/m²/day for three days each month). Both survival and local control were improved in the HART group; three-year survival was 28% versus 6%, p<0.001 and three-year local control was 29% versus 5%, p=0.008. Median survival for HART was 22.6 months compared with 14.0 months for standard radiotherapy patients (p<0.05). Radiation esophagitis was the predominant acute side effect; 87% of HART patients experienced grade 1-3 esophagitis compared with 44% of standard radiotherapy patients (p<0.05).
Hypofractionated Radiation Therapy

One randomized controlled trial examining hypofractionated radiotherapy has been published by Slawson et al (20). Sixty-three patients received standard radiotherapy of 60 Gy (2 Gy/fraction, 5 fractions/wk, 6 wks) and 57 patients received hypofractionated radiotherapy of 60 Gy (5 Gy/fraction, 1 fraction/wk, 12 wks). All patients had stage III NSCLC except for five stage IV NSCLC patients in the control group and two in the hypofractionated radiotherapy group. Both survival and local control rates were improved with hypofractionated radiotherapy. One-, two-, and three-year survival rates for hypofractionated radiotherapy were 59%, 29% and 19%, respectively, compared with 49%, 23%, and 9%, for standard radiotherapy. No significance values were provided. Seventy percent of hypofractionated radiotherapy patients experienced no esophagitis compared with 30% for standard radiotherapy.

Split-course Radiation Therapy

One randomized controlled trial examining split-course radiotherapy was identified, in which total dose and fraction size were similar in both arms of the study. Routh et al (7) randomized 159 patients to receive standard radiotherapy and 114 patients to receive split-course radiotherapy where treatment was interrupted for 10 to 14 days after the first 18 fractions, followed by 17 further treatments. Sixty-nine percent of patients had stage IIIA or IIIB NSCLC. There was no significant difference in survival between the two groups (p=0.83 logrank). Median survival for the standard radiotherapy group was 11.6 months compared with 10.9 months for split-course radiotherapy. A detailed analysis of morbidity was not reported.

VI. INTERPRETIVE SUMMARY

Altered fractionation can be divided into regimens that are designed to improve the therapeutic ratio (hyperfractionation; accelerated radiation therapy; and hyperfractionated, accelerated radiation therapy) and those which are designed to permit greater convenience for the patient (hypofractionation and split-course radiation therapy).

Altered Fractionation Designed to Improve Therapeutic Ratios

Hyperfractionation

Three of four randomized controlled trials (12,13,14) and one randomized phase I/II trial (22,23) demonstrated improved survival for hyperfractionated over standard radiotherapy. This was found to be statistically significant in one randomized controlled trial (12). A fourth randomized controlled trial did not demonstrate a survival benefit or detriment for hyperfractionated radiotherapy over either standard radiotherapy or standard radiochemotherapy (11). A published pooled analysis of data from three of these randomized controlled trials (10) found that hyperfractionated radiotherapy significantly improved survival compared with standard radiotherapy (odds ratio, 0.69; 95% confidence interval, 0.51 to 0.95; p=0.02). An unpublished meta-analysis of the same three trials (conducted by the CCOPGI's Resource Group using the Peto method) failed to demonstrate a significant survival benefit for hyperfractionated over standard radiotherapy (odds ratio, 0.67; 95% confidence interval, 0.42 to 1.07; p=0.091). We cannot account for the discrepancy other than that contributed by different algorithms used by each group to conduct the meta-analyses. It is possible that the published meta-analysis used the number at risk from the published reports of the three trials as their denominator. This would result in precision estimates (confidence intervals) at each time point that are wider than those found by the CCOPGI's Resource Group.

While the majority of patients included in these hyperfractionation trials had stage III NSCLC (90% to 100%), only 68% of patients had stage III NSCLC in one trial (14). This study was
not included in either pooled analysis. There was no significant difference in toxicity between the hyperfractionated and control groups, except for an increase in acute esophagitis that was found to be significant in the phase I/II trial (22,23).

Meta-analyses provide an estimate of the overall magnitude of a treatment effect for the total body of available evidence. However meta-analyses should be carefully assessed before applying them as the basis of a treatment recommendation in the absence of a large, definitive trial. Many studies are available which provide guidelines for conducting and appraising meta-analyses. Large meta-analyses (greater than 200 outcome events) using individual patient data or fully published data, free from selection bias and with p values ≤ 0.01 are likely to be clinically relevant (25-29). Due to the discrepancy of results between the published and unpublished meta-analyses, a concern regarding the sensitivity of meta-analysis, the absence of individual patient data in either meta-analysis, and the modest p value in the published meta-analysis (p=0.02), the Lung Cancer Disease Site Group concluded that there is insufficient data of high quality at this time to recommend hyperfractionated radiotherapy. Further trials are necessary to confirm the findings and, if possible, further collaborative study using individual patient data for a meta-analysis.

Accelerated Radiation Therapy

Preliminary results from one randomized controlled trial indicate that esophagitis was more severe (p=0.0041) and experienced for a longer duration (p<0.0001) in patients receiving accelerated radiotherapy compared with standard radiotherapy (19). Data comparing survival in both trial groups is not yet available. Therefore, accelerated radiation is not recommended outside the context of a clinical trial.

Hyperfractionated Accelerated Radiotherapy

One randomized controlled trial comparing CHART to standard radiotherapy showed a 24% reduction in the relative risk of death in patients receiving CHART (p=0.004) (15,16). Of note, 61% of patients in each arm of the trial had stage III NSCLC. Since survival is known to be superior for patients with stage I and II disease, disease stage of patients in this study should be taken into account when overall survival rates are considered. While acute esophagitis was initially more severe in the CHART group, levels were equal to the control group at three months. This information was updated by communication with the author. The median survival was greater for CHART (15.6 months versus 12.9 months; relative risk of death, 22% less for CHART). Four-year survival for CHART was 13% compared with 6% for standard radiotherapy. This corresponds to a hazard ratio of 0.78 (95% confidence interval, 0.65 to 0.94; p=0.008). One phase I/II CHARTWEL study (17) does not indicate whether there is a survival benefit for this type of radiotherapy compared with standard radiotherapy, or whether it results in toxicity. One comparative cohort study comparing HART to standard radiotherapy (18) demonstrated significant survival benefit for the HART group (p<0.001 for three-year survival and p<0.05 for median survival) with esophagitis as a side effect of HART; however, randomized controlled trials are required before recommendation of HART.

Therefore, of these three modes of hyperfractionated accelerated radiotherapy, only CHART can be recommended over standard radiotherapy for selected patients. These selected patients might include those patients who for various reasons are not candidates for induction chemotherapy (e.g., serious renal disease, neuropathy) or who refuse to receive chemotherapy.

Altered Fractionation Designed to Promote Greater Convenience for Patient

Hypofractionated Radiotherapy

One randomized controlled trial comparing hypofractionated to standard radiotherapy
resulted in improved survival rates at one, two and three years for hypofractionation, although it is unclear whether these results were statistically significant (20). Esophagitis, nausea and vomiting were found to be greater in the control group. More studies are necessary before hypofractionated radiotherapy can be recommended over standard radiotherapy in suitable patients.

Split-Course Radiation Therapy

One randomized controlled trial showed similar median survival rates for split-course radiotherapy and standard radiotherapy, with no clear evaluation of treatment-related toxicity (7). Therefore, split-course radiotherapy cannot be recommended over standard radiotherapy until further evidence is available.

Conclusion to Interpretive Summary

Of those strategies designed to improve therapeutic ratios, hyperfractionation cannot be recommended due to insufficient and conflicting data. Evidence from one randomized controlled trial indicates that CHART significantly improves survival over standard radiotherapy, with esophagitis as a side effect. CHART is a reasonable treatment option in selected patients as described above. While HART also appears to improve survival over standard radiotherapy, evidence thus far is from a comparative cohort study only; therefore, phase III trials are required before this treatment may be recommended. Accelerated radiotherapy has not been shown to improve survival. The trials designed to promote greater convenience for the patient (hypofractionated or split-course radiotherapy) did not demonstrate a significant survival benefit over standard radiotherapy.

VII. ONGOING TRIALS

<table>
<thead>
<tr>
<th>Protocol IDs</th>
<th>Title and details of trial</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARO 97-1:</td>
<td>CHARTWEL
A randomized multicentre trial of conventional fractionated radiotherapy versus CHARTWEL radiotherapy in patients with locally advanced, inoperable NSCLC. The main endpoint is survival. Projected accrual: 665 patients. The trial was activated in 1997. As of 2001, 230 patients have been accrued (5u).</td>
</tr>
</tbody>
</table>

VIII. DISEASE SITE GROUP CONSENSUS PROCESS

The Lung DSG recognized that the acceptance of CHART as a new standard of treatment in patients with locally advanced NSCLC would have a major impact on radiotherapy resources in Ontario. The scheduling of radiotherapy three times per day for 12 consecutive days would be logistically difficult and require treatment centres to open, for at least some patients, seven days per week. The incremental operating cost to radiotherapy treatment centres from the change in hours of operation is likely to be significant but potentially offset by decreased length of stay in hospital or lodges for out of town patients. For all patients, treatment is completed more quickly which reduces out of pocket expenses and inconvenience. Further studies are necessary to evaluate the economic issues associated
with CHART in the Canadian health care environment.

Studies are also required comparing CHART to the current standard of combined modality therapy (induction chemotherapy followed by radical radiotherapy) in good performance-status patients with locally advanced NSCLC. At present, in the absence of any evidence of superiority of CHART over combined modality therapy, its use should be limited to selected patients who either cannot take induction chemotherapy or who refuse it. These limited indications for the use of CHART should not have a major impact on resources.

The Lung DSG’s concerns about the meta-analysis published by Stuschke and Thames (10) were addressed through consultation with Dr. G. DeBoer (biostatistician from the University of Toronto), and suggestions from Dr. G. Browman. The Lung DSG recognized that there were insufficient data (or data of uncertain quality) for the acceptance of hyperfractionated radiation as the new standard of treatment in patients with locally advanced NSCLC. The odds ratios determined by the two meta-analyses were very similar (0.69 and 0.67). Although the significance levels were similar, one did not quite reach the conventional level of statistical significance (p=0.09), while the other did (p=0.02). Because these results were not very robust to minor differences in method, and given the major implications to treatment centres of switching from conventional to hyperfractionation schedules, the DSG did not feel that the strength of the evidence was sufficient to support a recommendation away from conventional practice towards hyperfractionated therapy.

Combined modality therapy consisting of easily-administered and inexpensive chemotherapy plus conventional radical radiotherapy has been shown to be superior to hyperfractionated radiotherapy and is therefore an accessible and affordable option for locally advanced, unresected, medically fit NSCLC patients. Whether hyperfractionated accelerated radiotherapy (CHART or HART) is equivalent or superior to combined modality therapy has not been tested. The Provincial Lung Cancer DSG recognizes the need for such a trial to be conducted, but felt that the current limitations in radiotherapy resources in Canada would make this a difficult trial to conduct. It is still a high priority to do such a trial in order to evaluate issues of survival, quality of life and economic impact. Several trials are currently evaluating whether the addition of concurrent chemotherapy to hyperfractionated radiotherapy is superior to concurrent chemotherapy and standard thoracic radiotherapy. If these trials are positive, the pressure to adopt hyperfractionated treatment approaches in lung, and potentially other cancers, will increase and necessitate an examination of the resource implications for radiotherapy treatment centres.

IX. EXTERNAL REVIEW OF THE PRACTICE GUIDELINE REPORT

This section describes the external review activities undertaken for the original guideline report.

Draft Recommendations

Based on the evidence described in the original guideline report above, the Lung DSG drafted the following recommendations:

Draft Recommendations

- There is evidence from one randomized controlled trial demonstrating that Continuous Hyperfractionated Accelerated Radiation Therapy (CHART) improves survival over standard radiotherapy of 60 Gy in 30 fractions, in patients with locally advanced, unresectable stage III non-small cell lung cancer (NSCLC). Selected patients (with ECOG performance status ≥ 1 who do not fit the criteria for induction chemotherapy and radiotherapy or patients who prefer radiotherapy only) may be considered for CHART.
• Evidence from a comparative cohort study suggests that Hyperfractionated Accelerated Radiation Therapy (HART) also improves survival over standard radiotherapy.

• Of those trials designed to improve therapeutic ratios in patients with locally advanced, unresectable stage III NSCLC there is insufficient data of high quality to recommend hyperfractionation over standard radiotherapy of 60 Gy in 30 fractions. Further randomized controlled trials are necessary to confirm the benefits, if any, of hyperfractionation radiotherapy.

• The main adverse effect associated with these altered fractionation treatments is acute esophagitis.

• Trials examining therapies providing greater convenience to patients with locally advanced, unresectable stage III NSCLC did not show evidence of a survival benefit for either hypofractionation or split-course radiotherapy. If symptom palliation is the main concern, patients may consider participating in clinical trials examining the role of hypofractionation or split-course radiotherapy.

• The effect of treatment on quality of life or health care costs was not reviewed in most of these trials. Therefore, if quality of life and health care costs are issues of concern, there is insufficient evidence at this time to draw any conclusions on the value of altered fractionation.

Practitioner Feedback
Based on the evidence contained in the original report and the draft recommendations presented above, feedback was sought from Ontario clinicians.

Methods
Practitioner feedback was obtained through a mailed survey of 98 practitioners in Ontario (46 medical oncologists, 26 radiation oncologists and 17 surgeons and the heads of radiation oncology programs at the eight regional cancer centres and the Princess Margaret Hospital). The survey consisted of items evaluating the methods, results and interpretive summary used to inform the draft recommendations and whether the draft recommendations above should be approved as a practice guideline. Written comments were invited. Follow-up reminders were sent at two weeks (post card) and four weeks (complete package mailed again). The results of the survey were reviewed by the Lung Cancer Disease Site Group.

Results
Key results of the practitioner feedback survey of the original draft guideline report are summarized in Table 3. Sixty-four (69.6%) surveys were returned. Thirty-nine (61%) respondents indicated that the evidence-based recommendation was relevant to their clinical practice and they completed the survey.

Summary of Main Findings and Actions
Twelve (19%) respondents provided written comments. The main points were:

• Only a small number of the respondents felt able to comment on this guideline due to its technical and specialized nature. Of those who did have specific comments, there was concern that the recommendations were confusing and did not guide practice. The Lung DSG, therefore, rewrote the guidelines to explicitly state that the standard of practice is combined modality therapy (induction chemotherapy followed by radical radiotherapy for patients with good performance status, unresected stage III NSCLC.) The Lung DSG also provided clearer direction in the Interpretive Summary as to which patients might be treated with CHART radiotherapy by exception.
Respondents were divided as to whether there was sufficient evidence to change practice to CHART or HART radiotherapy now. The DSG discussed this and concluded that a trial comparing combined modality therapy to CHART/HART would be necessary before a recommendation for a major change in practice could be made. On the other hand, selected good performance status patients who could not receive the current standard therapy could reasonably be offered CHART. Because these patients would be few in number, the resource implications would be modest.

Table 3. Practitioner responses to seven items on the practitioner feedback survey.

<table>
<thead>
<tr>
<th>Item</th>
<th>Number (%)</th>
<th>Strongly agree or agree</th>
<th>Neither agree nor disagree</th>
<th>Strongly disagree or disagree</th>
</tr>
</thead>
<tbody>
<tr>
<td>The rationale for developing this evidence-based recommendation, as stated in the “Choice of Topic” section of the report, is clear.</td>
<td>39 (100)</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>A practice guideline on this topic will be useful to clinicians.</td>
<td>29 (74)</td>
<td>8 (21)</td>
<td>2 (5)</td>
<td></td>
</tr>
<tr>
<td>The literature search is relevant and complete.</td>
<td>35 (90)</td>
<td>3 (8)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>The summary of the evidence is acceptable to me.</td>
<td>35 (90)</td>
<td>4 (10)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>I agree with this evidence-based recommendation as stated.</td>
<td>31 (80)</td>
<td>4 (10)</td>
<td>4 (10)</td>
<td></td>
</tr>
<tr>
<td>This recommendation should serve as a practice guideline.</td>
<td>25 (64)</td>
<td>8 (21)</td>
<td>6 (15)</td>
<td></td>
</tr>
<tr>
<td>Would you use this practice guideline in your own practice?</td>
<td></td>
<td>Yes</td>
<td>Unsure</td>
<td>No</td>
</tr>
</tbody>
</table>

NOTE: Some percentages do not add to 100 because of missing data.

Approved Practice Guideline Recommendations

This practice guideline reflects the integration of the draft recommendations in the External Review process and has been approved by the Lung DSG and the Practice Guideline Coordinating Committee.

This practice guideline applies to patients with locally advanced, unresectable stage III non-small cell lung cancer (NSCLC).

- The current standard treatment for unresected stage III NSCLC is combined modality therapy (See Related Practice Guideline Report #7-3: Unresected Stage III Non-Small Cell Lung Cancer).
- There is evidence from one randomized controlled trial demonstrating that Continuous Hyperfractionated Accelerated Radiation Therapy (CHART) improves survival over standard radiotherapy of 60 Gy in 30 fractions, in patients with locally advanced, unresectable stage III NSCLC. Therefore, selected patients (with ECOG performance status ≤ 1 who do not fit the criteria for induction chemotherapy and radiotherapy or patients who prefer radiotherapy only) may be considered for CHART.
- Evidence from a comparative cohort study suggests that Hyperfractionated Accelerated Radiation Therapy (HART) also improves survival over standard radiotherapy.
- On the other hand, there is insufficient data of high quality to recommend non-accelerated hyperfractionated radiotherapy over standard radiotherapy of 60 Gy in 30 fractions. Further randomized controlled trials are necessary to confirm the benefits, if any, of non-accelerated hyperfractionation radiotherapy.
- The main adverse effect associated with these altered fractionation treatments is acute esophagitis.
Trials examining therapies providing greater convenience to patients with locally advanced, unresectable stage III NSCLC did not show evidence of a survival benefit for either hypofractionation or split-course radiotherapy. If symptom palliation is the main concern, patients may consider participating in clinical trials examining the role of hypofractionation or split-course radiotherapy.

The effect of treatment on quality of life was not reviewed in most of these trials. Therefore, if quality of life is the main issue of concern, there is insufficient evidence at this time to draw any conclusions on the value of altered fractionation.

X. POLICY IMPLICATIONS

If CHART radiotherapy were to become the standard of care for patients with unresected stage III NSCLC, there would be a major impact on an already strained provincial radiotherapy system. The requirement to operate cancer centres seven days a week and to provide treatment fractions two to three times per day would create substantial operating challenges in cancer centres. There would also be incremental costs associated with the operation of centres on weekends. On the other hand, only a few selected patients would justify the use of CHART-type radiotherapy now. If randomized trials were to demonstrate a superiority of CHART over combined modality therapy, or if CHART plus chemotherapy were to become a new treatment standard, the impact on the provincial treatment system could be profound. Health system planners and policy makers need to be aware of this potential development.

XI. PRACTICE GUIDELINE

This practice guideline reflects the most current information reviewed by the Lung DSG.

Target Population

These recommendations apply to patients with locally advanced, unresectable stage III non-small cell lung cancer (NSCLC).

Note: The current standard treatment for unresected stage III NSCLC is combined modality therapy (Practice Guideline Report #7-3: Unresected Stage III Non-Small Cell Lung Cancer - see http://www.cancercare.on.ca/pdf/pebc7-3s.pdf).

Recommendations

Key Recommendations

- There is evidence from one randomized controlled trial demonstrating that Continuous Hyperfractionated Accelerated Radiation Therapy (CHART) improves survival over standard radiotherapy of 60 Gy in 30 fractions, in patients with locally advanced, unresectable stage III non-small cell lung cancer (NSCLC). Selected patients (with ECOG performance status ≥ 1 who do not fit the criteria for induction chemotherapy and radiotherapy or patients who prefer radiotherapy only) may be considered for CHART.
- Evidence from a comparative cohort study suggests that Hyperfractionated Accelerated Radiation Therapy (HART) also improves survival over standard radiotherapy.
- Of those trials designed to improve therapeutic ratios in patients with locally advanced, unresectable stage III NSCLC there is insufficient data of high quality to recommend hyperfractionation over standard radiotherapy of 60 Gy in 30 fractions. Further randomized controlled trials are necessary to confirm the benefits, if any, of hyperfractionation radiotherapy.
• Trials examining therapies providing greater convenience to patients with locally advanced, unresectable stage III NSCLC did not show evidence of a survival benefit for either hypofractionation or split-course radiotherapy. If symptom palliation is the main concern, patients may consider participating in clinical trials examining the role of hypofractionation or split-course radiotherapy.

• The effect of treatment on quality of life or health care costs was not reviewed in most of these trials. Therefore, if quality of life and health care costs are issues of concern, there is insufficient evidence at this time to draw any conclusions on the value of altered fractionation.

Qualifying Statements
• The main adverse effect associated with these altered fractionation treatments is acute esophagitis.

XII. JOURNAL REFERENCE

XIII. ACKNOWLEDGEMENTS
The Lung DSG would like to thank Drs. Edward Yu, Catherine Lochrin, Peter Dixon, Yee Chung Ung, William K Evans, and Ms. Angela Eady and Ms. Anna Gagliardi for taking the lead in drafting and revising this practice guideline report.

The Lung DSG would also like to thank Drs. Edward Yu, Yee Chung Ung, William K. Evans and Ms. Barbara R. Markman and Ms. Jean Mackay for taking the lead in updating this practice guideline report.

For a complete list of Lung DSG members, please visit our website at: http://www.cancercare.on.ca/.
REFERENCES

Update

This section includes all references from the review and updating activities.

Evidence-based Series #7-12 version 2: Section 3

A Quality Initiative of the Program in Evidence-Based Care (PEBC), Cancer Care Ontario (CCO)

Altered Fractionation of Radical Radiation Therapy in the Management of Unresectable Non-Small Cell Lung Cancer:

Document Review Summary

E. Yu, N. Ismaila, and the Lung Cancer Disease Site Group

Review Date: November 16, 2012

The 2002 guideline recommendations are ENDORSED

This means that the recommendations are still current and relevant for decision making.

OVERVIEW

The original version of this guidance document was released by Cancer Care Ontario’s Program in Evidence-based Care in 1999, and updated in 2002.

In September 2011, this document was assessed in accordance with the PEBC Document Assessment and Review Protocol and was determined to require a review. As part of the review, a PEBC methodologist conducted an updated search of the literature. A clinical expert (EY) reviewed and interpreted the new eligible evidence and proposed the existing recommendations could be endorsed. The Lung Cancer Disease Site Group (DSG) endorsed the recommendations found in Section 1 (Clinical Practice Guideline) in November 2012.

DOCUMENT ASSESSMENT AND REVIEW RESULTS

Question Considered

Do any altered fractionation radiation schemes prolong survival in the treatment of locally advanced, unresectable stage III non-small cell lung cancer (NSCLC) compared with the North American standard of 60 Gy in 30 fractions?

Literature Search and New Evidence

The new search October 2002 to August 2012) yielded 7 references representing 1 meta-analysis (1 meta-analysis had 2 publications), and 4 RCTs (1 RCT had 2 publications), evaluating the role of altered fractionation of radical radiation therapy in the management of unresectable non-small cell lung cancer. Five of these references had full text publications and 2 were in abstract...
form. There were no ongoing studies identified from clinicaltrials.gov. Brief results of these searches are shown in the Document Review Tool.

Impact on Guidelines and Its Recommendations
The new data supports existing recommendations. Hence, the Lung Cancer DSG ENDORSED the 2002 recommendations on the role of altered fractionation of radical radiation therapy in the management of unresectable non-small cell lung cancer. However, a clarification was suggested with the wording of the first key recommendation when defining the selected patients. It should read as;

“There is evidence from one randomized controlled trial demonstrating that Continuous Hyperfractionated Accelerated Radiation Therapy (CHART) improves survival over standard radiotherapy of 60 Gy in 30 fractions, in patients with locally advanced, unresectable stage III non-small cell lung cancer (NSCLC). Selected patients (with ECOG performance status ≥ 1 who do not fit the criteria for combination chemotherapy and radiotherapy or patients who prefer radiotherapy only) may be considered for CHART”

Document Review Tool

<table>
<thead>
<tr>
<th>Number and title of document under review</th>
<th>7-12 Altered Fractionation of Radical Radiation Therapy in the Management of Unresectable Non-Small Cell Lung Cancer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current Report Date</td>
<td>September 2002</td>
</tr>
<tr>
<td>Clinical Expert</td>
<td>Dr. Edward Yu</td>
</tr>
<tr>
<td>Research Coordinator</td>
<td>Nofisat Ismaila</td>
</tr>
<tr>
<td>Date Assessed</td>
<td>September 2011</td>
</tr>
<tr>
<td>Approval Date and Review Outcome (once completed)</td>
<td>Nov 16, 2012 [ENDORSE]</td>
</tr>
</tbody>
</table>

Original Question(s):
Do any altered fractionation radiation schemes prolong survival in the treatment of locally advanced, unresectable stage III non-small cell lung cancer (NSCLC) compared with the North American standard of 60 Gy in 30 fractions?

Target Population:
Patients with locally advanced, unresectable stage III non small cell lung cancer (NSCLC).

Study Section Criteria:
Articles were selected for inclusion in this systematic review of the evidence if they met the following criteria:

1. Randomized controlled trials comparing altered fractionation (including continuous hyperfractionated, accelerated, CHART, HART, CHARTWEL, or hypofractionated and splitcourse radiotherapy) with conventional fractionation in the treatment of stage III NSCLC.

2. Comparative cohort studies and phase I/II studies were eligible where data from randomized controlled trials were not available.

3. Survival was the primary outcome of interest. Toxicity was also considered.

Search Details:
brief summary/discussion of new evidence:

of 976 total hits from medline, embase + 8 total hits from ascO + 9 total hits from clinicaltrials.gov, 7 references representing 1 meta-analysis (1 meta-analysis had 2 publications), and 4 rcts (1 rct had 2 publications), were found evaluating the role of altered fractionation of radical radiation therapy in the management of unresectable non-small cell lung cancer. five of these references had full text publications and 2 were in abstract form. there were no ongoing studies identified from clinicaltrials.gov.

meta-analysis

<table>
<thead>
<tr>
<th>interventions</th>
<th>population</th>
<th>n of studies</th>
<th>outcomes</th>
<th>brief results</th>
</tr>
</thead>
<tbody>
<tr>
<td>hyperfractionated or accelerated</td>
<td>patients with nsclc (n=2000)</td>
<td>10 rcts</td>
<td>os</td>
<td>modified fractionation improved os as compared with conventional schedules</td>
</tr>
<tr>
<td>radiotherapy vs. conventional</td>
<td></td>
<td></td>
<td></td>
<td>(hazard ratio [hr] = 0.88, 95% ci, 0.80 to 0.97; p = .009), resulting in</td>
</tr>
<tr>
<td>radiotherapy</td>
<td></td>
<td></td>
<td></td>
<td>an absolute benefit of 2.5% (8.3% to 10.8%) at 5 years.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>no evidence of heterogeneity between trials was found.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>there was no evidence of a benefit on pfs (hr = 0.94; 95% ci, 0.86 to 1.03;</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>p = .19).</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>modified radiotherapy reduced deaths resulting from lung cancer (hr = 0.89;</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>95% ci, 0.81 to 0.98; p = .02), and there was a nonsignificant reduction</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>of non-lung cancer deaths (hr = 0.87; 95% ci, 0.66 to 1.15; p = .33)</td>
</tr>
<tr>
<td>belani et al 2005</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

randomized control trials

<table>
<thead>
<tr>
<th>interventions</th>
<th>population</th>
<th>follow-up</th>
<th>outcomes</th>
<th>brief results</th>
</tr>
</thead>
<tbody>
<tr>
<td>hyperfractionated-accelerated</td>
<td>patients with inoperable nsclc, who performance</td>
<td>3.3 years</td>
<td>p: os</td>
<td>overall survival at 2, 3 and 5 yr was not significantly different after</td>
</tr>
<tr>
<td>(chartwel)</td>
<td>status of 0 or 1, and suitable for radical</td>
<td></td>
<td>s: locoregional</td>
<td>chartwel (31%, 22% and 11%) versus cf (32%, 18% and 7%; hr 0.92, 95% ci</td>
</tr>
<tr>
<td>radiotherapy vs. conventionally</td>
<td>radiotherapy median age, 66 yrs (n=406)</td>
<td></td>
<td>tumour control,</td>
<td>0.75-1.13, p = 0.43).</td>
</tr>
<tr>
<td>fractionated radiotherapy</td>
<td></td>
<td></td>
<td>distant metastases and toxicity</td>
<td>also local tumour control rates and distant metastases did not significantly differ.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>acutE dysphagia and radiological pneumonitis were more pronounced after</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>chartwel, without differences in clinical signs of pneumopathy.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>exploratory analysis revealed a significant trend for improved lc after</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>chartwel versus cf with increasing uicc, t or n stage (p = 0.006-0.025) and</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>after neoadjuvant chemotherapy (hr 0.48, 0.26-0.89, p = 0.019).</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>belani et al 2005</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

once-daily radiation therapy (qdrot)

<table>
<thead>
<tr>
<th>interventions</th>
<th>population</th>
<th>follow-up</th>
<th>outcomes</th>
<th>brief results</th>
</tr>
</thead>
<tbody>
<tr>
<td>once-daily radiation therapy</td>
<td>treatment naive, and had stage iiia and b</td>
<td>min, 36</td>
<td>p: survival</td>
<td>median survival was 20.3 and 14.9 months for hart and qdrt, respectively</td>
</tr>
<tr>
<td>(qdrot)</td>
<td>unresectable</td>
<td>months</td>
<td>survival</td>
<td>(p=.28).</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>s: toxicity,</td>
<td>overall response was 25% and 22% for hart and</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Clinical Expert Interest Declaration:

1. **Does any of the newly identified evidence, on initial review, contradict the current recommendations, such that the current recommendations may cause harm or lead to unnecessary or improper treatment if followed?**
 - No, Ref #1 and #5 support the benefit of alterfx.

2. **On initial review,**
 - a. Does the newly identified evidence support the existing recommendations?
 - 2a, yes, 2b, consider to modify the recommendation that meta analysis showed survival benefit but must aware the trade off with increase esophagitis.
b. Do the current recommendations cover all relevant subjects addressed by the evidence, such that no new recommendations are necessary?

<table>
<thead>
<tr>
<th>3.</th>
<th>Is there a good reason (e.g., new stronger evidence will be published soon, changes to current recommendations are trivial or address very limited situations) to postpone updating the guideline? Answer Yes or No, and explain if necessary:</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td></td>
</tr>
</tbody>
</table>

4. Do the PEBC and the DSG/GDG responsible for this document have the resources available to write a full update of this document within the next year?

| I think so. |

<table>
<thead>
<tr>
<th>Review Outcome</th>
<th>ENDORESE</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>DSG/GDG Approval Date</th>
<th>Nov 16, 2012</th>
</tr>
</thead>
</table>

- In recommendation section, modify patients who are not eligible for combined chemotherapy and radiation rather than induction chemo and radiation. The word “induction” may be confusing since the relevance of chemotherapy is not clear.

- There are no studies that compare altered fractionation to standard of care concurrent chemoradiation. Therefore in fit well patients concurrent chemoradiation with standard fractionation remains the SOC. There are data from a Meta-Analysis showing modestly improved survival from hyperfractionated RT compared with standard fractionation. In patients not appropriate for concurrent chemoRT, altered fractionation can be considered as an appropriate treatment modality.

DSG/GDG Commentary

New References Identified (alphabetic order):

Search strategy:

Medline
1. meta-Analysis as topic.mp. [mp=ti, ab, on, hw, ps, rs, ui, sh, tn, dm, mf, dv, kw]
2. meta analysis.pt.
3. (meta analy$ or metaanaly$).tw.
4. (systematic review$ or pooled analy$ or statistical pooling or mathematical pooling or statistical summar$ or mathematical summar$ or Quantitative synthes$ or quantitative overview$).tw.
5. (systematic adj (review$ or overview$)).tw.
6. (exp Review Literature as topic/ or review.pt. or exp review/) and systematic.tw.
7. or/1-6
8. (cochrane or embase or psychlit or psyclit or psychinfo or cinahl or cinhal or science citation index or scisearch or bids or sigle or cancerlit).ab.
9. (reference list$ or bibliograph$ or hand-search$ or relevant journals or manual search$).ab.
10. (selection criteria or data extraction or quality assessment or jadad scale or methodological quality).ab.
11. (study adj selection).ab.
12. 10 or 11
13. review.pt.
14. 12 and 13
15. exp randomized controlled trials as topic/ or exp clinical trials, phase III as topic/ or exp clinical trials, phase IV as topic/
16. (randomized controlled trial or clinical trial, phase III or clinical trial, phase IV).pt.
17. random allocation/ or double blind method/ or single blind method/
18. (randomi$ control$ trial? or rct or phase III or phase IV or phase 3 or phase 4).tw.
19. or/15-18
20. (phase II or phase 2).tw. or exp clinical trial/ or exp clinical trial as topic/
21. (clinical trial or clinical trial, phase II or controlled clinical trial).pt.
22. (20 or 21) and random$.tw.
23. (clinic$ adj trial$1).tw.
24. ((singl$ or doubl$ or treb$ or tripl$) adj (blind$3 or mask$3 or dummy)).tw.
25. placebos/
26. (placebo? or random allocation or randomly allocated or allocated randomly).tw.
27. (allocated adj2 random).tw.
28. or/23-27
29. practice guidelines/
30. practice guideline?.tw.
31. practice guideline.pt.
32. or/29-31
33. 7 or 8 or 9 or 14 or 19 or 22 or 28 or 32
34. (comment or letter or editorial or note or erratum or short survey or news or newspaper article or patient education handout or case report or historical article).pt.
35. 33 not 34
36. limit 35 to english
37. Animal/
38. Human/
39. 37 not 38
40. 36 not 39
41. (cancer? or carcinoma? or neoplasms? or tumor?).tw.
42. non small cell lung.tw.
43. 41 and 42
44. (radiotherapy or radiation or irradiation).tw.
45. (hyperfractionation or hypofractionation).tw.
46. (accelerated fractionation or altered fractionation).mp.
47. 44 or 45 or 46
48. 43 and 47
49. 40 and 48
51. 49 and 50

Embase

1. exp meta analysis/ or exp systematic review/
2. (meta analy$ or metanaly$).tw.
3. (systematic review$ or pooled analy$ or statistical pooling or mathematical pooling or statistical summar$ or mathematical summar$ or quantitative synthes$ or quantitative overview).tw.
4. (systematic adj (review$ or overview$)).tw.
5. exp review/ or review.pt.
6. (systematic or selection criteria or data extraction or quality assessment or jadad scale or methodological quality).ab.
7. (study adj selection).ab.
8. 5 and (6 or 7)
9. or/1-4,8
10. (cochrane or embase or psychlit or psyclit or psychinfo or cinahl or cinhal or science citation index or scisearch or bids or sigle or cancerlit).ab.
11. (reference list$ or bibliograph$ or hand-search$ or relevant journals or manual search$).ab.
12. exp randomized controlled trial/ or exp phase 3 clinical trial/ or exp phase 4 clinical trial/
13. randomization/ or single blind procedure/ or double blind procedure/
14. (randomi$ control$ trial? or rct or phase III or phase IV or phase 3 or phase 4).tw.
15. or/12-14
16. (phase II or phase 2).tw. or exp clinical trial/ or exp prospective study/ or exp controlled clinical trial/
17. 16 and random$.tw.
18. (clinic$ adj trial$.1).tw.
19. ((singl$ or doubl$ or treb$ or tripl$) adj (blind$3 or mask$3 or dummy)).tw.
20. placebo/
21. (placebo? or random allocation or randomly allocated or allocated randomly).tw.
22. (allocated adj2 random).tw.
23. or/18-22
24. practice guidelines/
25. practice guideline?.tw.
27. or/24-26
28. 9 or 10 or 11 or 15 or 17 or 23 or 27
29. (editorial or note or letter or erratum or short survey).pt. or letter/ or case study/
30. 28 not 29
31. limit 30 to english
32. Animal/
33. Human/
34. 32 not 33
35. 31 not 34
36. (cancer? or carcinoma? or neoplasms? or tumor?).tw.
37. non small cell lung.tw.
38. 36 and 37
39. (radiotherapy or radiation or irradiation).tw.
40. (hyperfractionation or hypofractionation).tw.
41. (accelerated fractionation or altered fractionation).mp.
42. 39 or 40 or 41
43. 38 and 42
44. 35 and 43
45. (2002$ or 2003$ or 2004$ or 2005$ or 2006$ or 2007$ or 2008$ or 2009$ or 2010$ or 2011$ or 2012$).ew.
46. 44 and 45

ASCO Annual Meeting - searched http://www.ascopubs.org/search with keywords:
Fractionation Radiotherapy and NSCLC

Clinicaltrials.gov - searched http://clinicaltrials.gov/ct2/home with keywords: Fractionation Radiotherapy and NSCLC

OUTCOMES DEFINITIONS

1. **ARCHIVE** – An archived document is a document that will no longer be tracked or updated but may still be useful for academic or other informational purposes. The document is moved to a separate section of our website, each page is watermarked with the phrase “Archived document, not for use in clinical decision making,”

2. **ENDORSEMENT** – An endorsed document is a document that has been reviewed by the DSG for currency and relevance, and the DSG believes it is still useful as guidance for clinical decision making. A document may be endorsed because the DSG feels the current recommendations and evidence are sufficient, or it may be endorsed after a literature search uncovers no evidence that would alter the recommendations in any important way.

3. **DEFERRAL** – A Deferral means that the clinical reviewers feel that the document is still useful and the decision has been made to postpone further action due to a number of reasons. The reasons for deferral should be found in the DART form and on the document.

4. **UPDATE** – An Update means that the DSG/GDG recognizes that there is new evidence that makes changes to the existing recommendations in the guideline necessary but these changes are more involved and significant than can be accomplished through the Document Assessment and Review process. The DSG/GDG will rewrite the guideline at the earliest opportunity to reflect this new evidence. Until that time, the document will still be available as its existing recommendations are still of some use in clinical decision making.